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The Incredible Predictive Power of 
String Theory

Dr Ed Segal

If you pay any attention at all to popular science 
news, you will certainly have heard of string 
theory. Many physicists make grandiose claims 
for it – it will unify gravity and quantum theory, 
it’s a ‘theory of everything’. Others view the 
whole field as a gigantic scam, a mirage that 
has swallowed generations of graduate students 
and damaged theoretical physics for decades. 
The reason for the controversy is simple: huge 
numbers of theorists have been developing it, 
for about 30 years, and they still can’t predict 
the result of a single experiment. They’re not 
even close. If you want to know if string theory is 
correct don’t hold your breath for a press release 
from CERN – it’s not going to happen in the 
foreseeable future.

So is my choice of title just sarcastic? No! 
(Ok, maybe a bit...). String theory does make 
predictions, but they’re of a very different kind. 
String theory makes predictions about pure 
mathematics - interesting, difficult and important 
predictions. And so far, every one of these 
predictions has been proved right! So whether 
it’s relevant to physics or not - and personally I’m 
agnostic on this point – there’s no question that 
string theory is relevant to mathematics. 

To understand how string theory can make 
predictions about maths, let’s start by going back 
300 years, to Newtonian mechanics. Newton’s 
laws describe how a particle moves around 
in flat 3-dimensional space, and it’s trivial to 
generalize them to a particle moving around in 
flat n-dimensional space. But mathematicians 
are interested in lots of other spaces besides 
ordinary flat space. A particularly important class 
of spaces are manifolds, these are spaces that 
“close up” look like flat space, but when you 
zoom out they look different. A good example is 
the surface of a sphere – close up it looks like 
a flat 2d space, but globally it’s very different. It 
turns out that you can formulate Newton’s laws 
for any manifold (technically you first need to 
equip the manifold with a Riemannian metric, 
which is a way of measuring distances), then you 
get a theory which describes a particle moving 
around on that particular manifold.

If you study that physical theory then it’s clear 
that you’ll start to learn some things about the 
shape of the manifold –  for example a particle 
moving freely on a sphere will eventually get 
back to its starting point, but in flat space this will 
never happen.

Now back to string theory. The basic physical 
idea in string theory is to replace your particles 
by tiny little loops, or “strings”. These loops can 
move around, but crucially they can also vibrate, 
like the string of a musical instrument that’s 
just been plucked. String theorists hope that all 
the usual particles can be described by strings 
vibrating in different ways, so an electron is just a 
string playing a particular note, and a quark is the 
same string playing a different note.

Like our Newtonian particles, we can think of 
our strings moving about in ordinary flat space if 
we want, but its more interesting if we let them 
move around in a different manifold. In fact the 
physics demands that we do this, because for a 
technical reason the theory only works properly 
if the strings move around in a 10-dimensional 
space.  Since our universe appears to be only 
4-dimensional, string theorists speculate that 
there are six additional dimensions that form 
a closed-up manifold, perhaps something like 
a 6-dimensional sphere. This is the kind of 
speculation that irritates more hard-headed 
physicists!

Strings prefer to move around on a special kind 
of manifold called a Kähler manifold. These are 
manifolds which have complex numbers built into 
their structure, and also the Riemannian metric 
is of a special form. Perhaps you remember the 
Riemann sphere – the complex plane curled up 
with an extra point at infinity – that’s the simplest 
example of a Kähler manifold. 

A good way to get more complicated examples 
is to take polynomials and look at the set of 
complex solutions, often the resulting shape will 
be a  Kähler manifold. 
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So Kähler manifolds are things that lots of pure 
mathematicians are interested in, geometers 
certainly, but also algebraists (because of the 
polynomials) and sometimes even number 
theorists.

If you could understand how a string moves 
around in your favourite Kähler manifold, 
you could learn things about the shape of 
the manifold. Unfortunately there’s a serious 
problem: mathematicians don’t understand 
string theory. In fact the problem goes deeper, 
mathematicians don’t really understand quantum 
field theory, and that’s a piece of physics that’s 
nearly 100 years old. And when I say we don’t 
understand it, I don’t mean that we can’t solve 
the equations, I mean that we don’t even 
understand what the equations mean! Physicists 
write down symbols, and we can’t figure out 
what mathematical objects they’re supposed to 
be referring to. Of course the physicists don’t 
care about this, for them the symbols refer 
to physical concepts: fields, particles, and so 
on. Mathematicians try to interpret them as 
mathematical concepts: sets, functions, vector 
spaces etc., but we don’t always succeed. We 
have two different mind sets, and this makes it 
very difficult for mathematicians to understand 
physicist’s calculations.

The thing that bridges this cultural divide 
is supersymmetry. This is a rather abstract 
symmetry that some physical theories have; 
all particles in physics fall into two classes, 
bosons and fermions, and supersymmetry 
makes the two kinds swap places. Theorists 
love supersymmetry, and the LHC is actively 
looking for experimental evidence of it, but so far 
the results are disappointing. Of course string 
theorists are not dissuaded by that fact! No string 
theorist would dream of studying a theory that 
didn’t have supersymmetry.

The reason supersymmetry is nice is that it 
makes some computations much easier. If a 
theory has supersymmetry then the fine details 
of the physics will still be hard, but certain 
fundamental pieces of information will be 
‘invariants’, meaning that they do not change 
if we make small perturbations. Imagine that 
your strings are moving around in a Kähler 
manifold, and you deform the manifold a little bit, 
perhaps squeezing one part of it, and stretching 
another. This could make a big difference to the 
trajectories of individual strings. 

 Figure 1: The Hodge diamonds of the cubic 
threefold (left) and its mirror
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However, the invariants provided by 
supersymmetry are guaranteed to stay the same, 
and it is this robustness that makes them easy to 
calculate.

If you’re a pure mathematician, your ears prick 
up at the mention of ‘invariants’. We love to 
calculate invariants of all kinds, and we definitely 
love to calculate invariants of Kähler manifolds. 
The invariants that come out of supersymmetric 
string theory are exactly the kind of thing that 
mathematicians care about! Some of them are 
invariants that we already knew about, like Euler 
characteristics, and homology groups, and some 
of them are brand new 

This leaves us in a rather surprising situation. 
Physicists’ arguments – which we don’t 
understand – can compute geometrical quantities 
that pure mathematicians are very interested 
in. Mathematicians now have to listen to the 
predictions made by string theorists, and their 
predictions are right!

 Figure 2: Circles tangent to three lines

Most of these predictions, though not all, centre 
around an astonishing phenomenon called mirror 
symmetry. Take your favourite Kähler manifold, 
and write down the physical theory for strings 
moving around in it. You can now do a really 
trivial operation on that theory – basically just 
swap a few plus and minus signs – and get a 
new physical theory of a similar kind. What does 
this new theory actually describe? It’s definitely 
doesn’t describe strings moving around in your 
original manifold, because the first theory did 
that, but perhaps it describes strings moving 
around in a different Kähler manifold. So perhaps 
this means that Kähler manifolds come in pairs, 
with the string theories for each pair being related 
by this trivial sign change. In this hypothesis, the 
pairs of manifolds are called ‘mirrors’ to each 
other. 

Let’s assume you believe this idea. If I hand you 
a Kähler manifold, then it should be possible to 
produce its partner, the mirror manifold. But how 
would you know if you’d got the correct mirror? 
For a start, you could compute some invariants. 
The most fundamental invariants of a Kähler 
manifold are called the Hodge numbers, this is a 
finite set of numbers.
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For example, if we ask `how many curves 
of degree three can we draw on the quintic 
threefold?’ then the answer is 317,206,375. This 
ridiculous number is an example of a Gromov-
Witten invariant, and it was first predicted by the 
four physicists named above. They did it using 
mirror symmetry.

Mirror symmetry swaps Hodge numbers for 
Hodge numbers in a simple way, but it turns 
out that it swaps Gromov-Witten invariants 
to a completely different kind of invariant, 
which is sometimes much easier to compute. 
Candelas et al. had a good guess for the mirror 
manifold to the quintic threefold, so they simply 
computed the corresponding invariant for the 
mirror manifold. The answer was subsequently 
confirmed by mathematicians, without any mirror 
symmetry hocus-pocus.

If you can correctly predict a six-digit number 
then you can win the lottery. Mirror symmetry 
had correctly predicted a nine-digit number, 
and mathematicians went crazy for it. If string 
theory can do that, people asked, then what else 
might it be able to do? The answer has been 
‘an awful lot’, and there is now a huge body of 
work on ‘pure-maths-inspired-by-string-theory’, 
and several Fields Medals have been won in the 
process. 

The moral of the story is, if you want to learn 
something new about Kähler manifolds, read a 
string theory paper.

In Figure 1 you can see the Hodge numbers 
of a famous Kähler manifold called the quintic 
threefold, this manifold is the set of solutions to 
a quintic polynomial in five variables. Physicists 
tell us that if two manifolds form a mirror pair 
then their Hodge diamonds are nearly the 
same - to get from one to the other you have to 
do a reflection of the array through a particular 
diagonal line (marked in red on Figure 1); this is 
where the name ‘mirror’ comes from. So now we 
have a fairly precise prediction: given a Kähler 
manifold, is there a geometric operation that will 
produce a new manifold, in a such a way that 
their Hodge diamonds are mirror images?

At first sight the answer to this question is simply 
‘no’, there is no obvious geometric operation 
that will do this. But, for reasons I will explain 
in a moment, mathematicians take this idea 
extremely seriously. And after 20 years hard 
work by brilliant people, we can do it, for some 
examples. I find it absolutely staggering that 
such a trivial little operation in physics ends up 
requiring the most monumental effort in geometry 
and algebra.

So why did mathematicians believe mirror 
symmetry in the first place? There are now lots 
of good reasons, but the first really compelling 
reason was a result by Candelas, de la Ossa, 
Green and Parkes in 1991. Their result involves 
things called Gromov-Witten invariants, which 
are a deeper and more complicated invariant of 
Kähler manifolds, and exactly the kind of thing 
that both geometers and string theorists are 
interested in calculating. To get some kind of 
flavour of these invariants, imagine drawing three 
random lines in the plane, and then ask: how 
many circles can you draw that are tangent to all 
three lines? 

This question is easy - the answer is four (see 
Figure 2) - but that’s because we formulated the 
question in flat 2-dimensional space. If you ask 
an analogous question in a Kähler manifold, you 
may get a much more complicated answer. 


